Earth Science Technology Program (ESTP)

Presentation to ESSAAC

May 7-8, 2002

"The Committee requests that a technology assessment report be given during the next meeting, covering the specifics of future critical path technologies that are needed for the Enterprise to complete its science agenda."

> George J. Komar Program Manager

Deriving Measurement Requirements from the Research Strategy (with Science Themes)

Technology Capability for the Research Strategy Needs

Variability	Forcing	Response	Consequence	Prediction
Precip Radar, Radiometer, Large Antenna, Very Low Freq. Radar, On-board Processing	Active Optical, Interferometry, Interoperable Data Models	Radiometry, SAR, Interferometric SAR, On-board Processing/Data Compression/Storage	Precip Radar, Data Mining, Fusion	Real-time Data Assimilation, Interoperable Data Models
Precision Altimetry, Vector Wind, Active/Passive Microwave	I maging Spectrometry, Hyperspectral, Low Freq. Radar, Data Mining, Fusion	Active Optical, Data Distribution, Mining, Fusion	Hyperspectral, Topography, Data Distribution, Mining, Fusion	Climate Modeling, Data Visualization
I maging Spectroscopy, Dual Freq. Radar, Data Mining, Fusion	Hyperspectral Imaging, Thermal, Ob- board Processing/Data Compression/Storage, Fusion	SAR, On-board Processing/Data Compression/Storage, Mining, Visualization	Multispectral Radiometry, Data Mining	Long-term Climate Modeling, Data Mining, Fusion
UV-IR Spectrography & Imaging, Lidar		UV-IR Spectrography & I maging, Spectrometry, On-board Processing/Data Compression/Storage		Atmospheric Constituent Modeling
Dual Freq. SAR, Lidar Altimetry, Data Mining		SAR Interferometry, GPS, Data Visualization		Carbon Cycle Modeling, Data Visualization
Gravity Gradiometer, Magnetometer		Lidar, Passive Radiometry, Data Visualization		

May 2002 http://esto.nasa.gov

The Path from Measurement Needs to Technology Capability

13 Meetings/Workshops (to engage the community)

- Wide Community Involvement
- Distributed across Academia, Industry and other Govt. Organizations

Capability Needs for Science, Applications and Technology (CN-SAT)

- Capture Technology Requirements and track in database

Integrated Technology Development Plan

Plan for what technology will be developed

Focus for Technology Solicitations

NRA Solicitations	Focus
NMP EO-1 (Space Validation) '96 \$192M	Validate technologies contributing to the cost reduction and increased capabilities for future land imaging missions. (Landsat data)
IIP Round 1 (Instruments) '98 27 for \$39M	Open and unconstrained; covering active and passive optical and active and passive microwave instruments
NMP EO-3 (Space Validation) '98 \$105M	Validate technologies contributing to the cost reduction and increased capabilities for future weather forecasting. (future GOES)
ATI Component Technology (ACT Round 1) '99 23 for \$17M	Core instrument technology; covering active and passive optical, and active and passive microwave instrument components
AIST Round 1 (Info Systems) '99 30 for \$26M	On-board space-based information systems applications including data processing, organization, analysis, storage, and transmission; intelligent sensor and platform control; and network configuration.
IIP Round 2 (Instruments) '01 11 for \$30M	Microwave radiometry, radar, laser/lidar instruments
ACT Round 2 (Components) '02 \$12M max for 3 yrs	Antenna, electronics, detectors, and optics components
AIST Round 2 / IIP Round 3 \$18M max for 3 yrs / \$25M max for 3 yrs	In Process for FY 03

Distributed FY 01-02 Technology Investments

Technology Success Stories

6 ESSP-3 Proposals based on LLP Instruments
 Delay Doppler Phase (D2P) Radar Altimeter
 ABYSS (ocean floor)

Low Mass, Low Power Radar (OSIRIS)
HYDROS (soil moisture)

Ultra Stable Microwave Radiometer (USMR)
AQUARI US (sea surface salinity)

3 AIST projects related to Open GIS Consortium (OGC) for access
 NASA Web GIS Server Web Coverage Client EOSDIS Data Pools
 Sensor Modeling Language
 OGC Service Model CEOS Data Interoperability

OSIRIS System configuration

USMR: Pin diode switch assembly

science data

Success Story: New Millennium Program (NM)

EO-1: Validation of 9 Breakthrough Technologies

- Advanced Land Imager: reduces costs for future missions
- Hyperion (hyperspectral imager): enables new earth science capabilities

X-Band Phased Array Antenna

Leisa Atmospheric Corrector

Advanced Land I mager

Carbon-Carbon Radiator

Wideband Advanced Recorder/Processor

Pulsed Plasma Thruster

Hyperion

Lightweight Flexible Solar Array

Enhanced Formation Flying

EO-1 Hyperion Distinguishes Crop Types

Technology Infusion Success Stories

HAMSR in ER-2 Wing Pod

- We have infused technology into the CAMEX-4, a multi-agency field campaign to study hurricanes in August 2001.
 - Second Generation Precipitation Radar, PR-2 (airborne) flew on the DC-8.
 - High Altitude MMIC Sounding Radiometer (HAMSR)
 measuring temperature, water vapor and clouds flew on
 the NASA ER-2.

NPP In-Situ User Terminal

Current Technology Challenges

Large Deployables

Fill
Technology
Capability Gaps

Laser/Lidar

Optical Comm

Communication

Information Knowledge Capture

Dissemination of Knowledge

12

More Work to be Done ... Getting the Red Out

	•		• •
Va	r_{1}	nı	1 + \ /
va	11		III V
- V C4	···	\sim	

Precip Radar, Radiometer, Large Antenna, Very Low Freq. Radar, Onboard Processing

Precision Altimetry, Vector Wind, Active/Passive Microwave

I maging Spectroscopy, Dual Freq. Radar, Data Mining, Fusion

UV-IR Spectrography & I maging, Lidar

Dual Freq. Radar, Lidar Altimetry, Data Mining

Gravity Gradiometer, Magnetometer

Forcing

Active Optical, Interferometry, Interoperable Data Models

I maging Spectrometry, Hyperspectral, Low Freq. Radar, Data Mining, Fusion

Hyperspectral I maging, Thermal, Obboard Processing/Data Compression/Storage, Fusion

Response

Radiometry, SAR, Interferometric SAR, On-board Processing/Data Compression/Storage

Active Optical, Data Distribution, Mining, Fusion

SAR, On-board Processing/Data Compression/Storage, Mining, Visualization

UV-IR Spectrography & I maging, Spectrometry, On-board Processing/Data Compression/Storage

SAR Interferometry, GPS, Data Visualization

Lidar, Passive Radiometry, Data Visualization

Consequence

Precip Radar, Data Mining, Fusion

Hyperspectral, Topography, Data Mining, Fusion

Multispectral Radiometry, Data Mining

Prediction

Real-time Data Assimilation, Interoperable Data Models

Climate Modeling, Data Visualization

Long-term Climate Modeling, Data Mining, Fusion

> Atmospheric Constituent Modeling

Carbon Cycle Modeling, Data Visualization

Summary

Critical Technologies Enabling Science

- Lightweight Microwave Radiometry to enable Global Precipitation Measurement
- Advanced Low Mass, Low Power Radar to enable Soil Moisture Measurement
- Delay Doppler Radar Altimetry to enable Ocean Bathymetry Measurement

Challenges to Enable Future Science

- Laser/Lidar technology to enable atmospheric science measurements
- Large Deployables to enable future weather/climate/natural hazards measurements
- Intelligent Distributed Systems using optical communication, on-board reprogrammable processors, autonomous network control, data compression, high density storage
- Information Knowledge Capture through 3-D Visualization, holographic memory and seamlessly linked models.

